NI	0.9798 (7)	-0.1439 (4)	-0.0641 (7)	2.6(1)
N2	1.2040 (8)	0.4858 (4)	0.5618 (8)	3.2(1)
N3	0.9465 (9)	0.2929 (5)	0.7010 (9)	4.1 (2)
N4	0.5127 (8)	0.0817 (4)	0.7432 (8)	3.0(1)
N5	0.4308 (8)	0.2556 (4)	0.0486 (8)	3.5 (2)
N6	1.3260 (8)	0.2585 (4)	0.5001 (8)	3.4 (2)

Table 2. Selected geometric parameters (Å)

Mo1-01	1.712 (6)	Mo5-016	1.709 (6)
Mo1-02	1.714 (6)	Mo5-017	1.815 (5)
Mo1-08	1.915 (5)	Mo6-017	2.042 (5)
Mo1-09	2.350 (5)	Mo6-018	1.701 (6)
Mo1-012 ⁱ	1.910 (5)	Mo6-019	1.719 (6)
Mo1-013 ⁱ	2.207 (5)	Mo6-025	1.896 (5)
Mo2-03	1.712 (5)	Mo6-026	2.213 (5)
Mo204	1.698 (6)	Mo6	2.217 (5)
Mo2	1.944 (5)	Mo7-020	1.699 (5)
Mo2-010	2.291 (5)	Mo7-026	1.912 (5)
Mo2-011	1.946 (5)	Mo7-027	1.765 (5)
Mo2-013 ⁱ	2.238 (5)	Mo7—O29 ¹¹	2.121 (5)
Mo3-05	1.700 (6)	Mo7-030	1.935 (5)
Mo3-09	1.764 (5)	Mo7—O30 ⁱⁱ	2.429 (5)
Mo3-010	1.880 (5)	Mo8-021	1.721 (5)
Mo3-012	2.132 (5)	Mo8-022	1.706 (5)
Mo3-013	1.939 (5)	Mo8-025	1.985 (5)
Mo3—O13 ⁱ	2.447 (5)	Mo8-026	2.261 (5)
Mo406	1.705 (6)	Mo8-028	1.906 (5)
Mo4-07	1.710 (6)	Mo8—O30 ⁱⁱ	2.253 (5)
Mo4-010	2.205 (5)	Mo9-023	1.711 (6)
Mo4011	1.905 (5)	Mo9-024	1.706 (5)
Mo4-012	2.190 (5)	Mo9-027	2.320 (5)
Mo4014	2.040 (5)	Mo9-028	1.954 (5)
Mo5-014	1.824 (5)	Mo9-029	1.919 (5)
Mo5-015	1.733 (6)	Mo9-O30	2.254 (5)

Symmetry codes: (i) 2 - x, -y, 1 - z; (ii) 2 - x, 1 - y, -z.

Pairs of atoms further than 3.97 Å apart were assigned to be pairs of N atoms of ammonium ions, as distances between two N atoms should be longer than 3.7 Å (Seimons & Templeton, 1954).

All calculations were carried out using *TEXSAN* (Molecular Structure Corporation, 1989) software running on a MicroVAXII computer.

Lists of structure factors, anisotropic displacement parameters, hydrogen-bond distances and complete geometry have been deposited with the IUCr (Reference: OH1091). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Adams, R. D., Klemperer, W. G. & Liu, R. (1979). J. Chem. Soc. Chem. Commun. pp. 256-257.
- Bharadwaj, P. K., Ohashi, Y., Sasada, Y., Sasaki, Y. & Yamase, T. (1986). Acta Cryst. C42, 545-547.
- Böschen, I., Buss, B. & Krebs, B. (1974). Acta Cryst. B30, 48-56.
- Garin, J. L. & Costamagna, J. A. (1988). Acta Cryst. C44, 779-782.
- Isobe, M., Marumo, F., Yamase, T. & Ikawa, T. (1978). Acta Cryst. B34, 2728-2731.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kamenar, B., Korpar-Colig, B., Penavic, M. & Cindric, M. (1990). J. Chem. Soc. Dalton Trans. pp. 1125-1130.
- McCarron, E. M. III & Harlow, I. R. L. (1983). J. Am. Chem. Soc. 105, 6179-6181.
- McCarron, E. M. III, Whitney, J. F. & Chase, D. B. (1984). *Inorg. Chem.* 23, 3275–3280.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved

- Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Niven, M. L., Cruywagen, J. J. & Heyns, B. B. (1991). J. Chem. Soc. Dalton Trans. pp. 2007-2011.

Seimons, W. J. & Templeton, D. H. (1954). Acta Cryst. 7, 194-198.

Touboul, M., Idoura, C. & Tolédano, P. (1984). Acta Cryst. C40, 1652-1655.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Yamase, T. & Naruke, H. (1991). J. Chem. Soc. Dalton Trans. pp. 285-292.

Acta Cryst. (1996). C52, 1872-1874

Triperchloratoytterbium(III) Monohydrate, Yb(ClO₄)₃.H₂O

CLAUDE BELIN, FRÉDÉRIC FAVIER, J. LOUIS PASCAL AND MONIQUE TILLARD-CHARBONNEL

Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, URA CNRS 79 CC15, Université de Montpellier II, Sciences et Techniques du Languedoc, 2 Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France

(Received 6 November 1995; accepted 6 February 1996)

Abstract

The crystal structure of triperchloratoytterbium(III) monohydrate, $Yb(ClO_4)_3$.H₂O, has been determined. In this coordination compound, bidentate and tridentate perchlorato groups form a channelled three-dimensional network. The eightfold coordination of ytterbium is completed by one strongly bound water molecule lying inside the channels.

Comment

In spite of its well known weak coordination behaviour, ClO_4^- can compete with more basic molecules or ions such as H_2O or OH^- in complexing small-sized and polarizing cations like the lanthanide ions Ln^{3+} (Huskowska, Legendziewicz, Schleid & Meyer, 1992). This is demonstrated well by the compounds $Nd_2(OH)_3(ClO_4)_3.5H_2O$ (Csöregh, Huskowska, Ertan, Legendziewicz & Kierkegaard, 1989) and $Pr_2(OH)_3H_2O(ClO_4)_3$ (Schleid, Meyer, Oczko & Legendziewicz, 1991), and particularly by the title compound, Yb(ClO_4)_3.H_2O.

The molecular structure of Yb(ClO₄)₃.H₂O comprises bidentate and tridentate perchlorato groups that form catenated rings including six Yb atoms (Yb— Yb distances range from 5.77 to 5.92 Å). These rings are linked to each other exclusively through tridentate groups to form large channels along the *c* axis that contain water molecules. The bridging bidentate groups are slightly less distorted in this compound than in Sb₂Cl₆(OH)O(ClO₄) (Belin, Chaabouni, Pascal & Potier, 1982) or in $Ti(ClO_4)_4$ (Fourati et al., 1986) where ClO_4^- is not bridging but chelating. The tridentate groups compare well with those found in cobalt or nickel perchlorato complexes (Pascal, Potier, Jones, Roziere & Michalowicz, 1985) as well as in the praseodymium complex mentioned above, but are different from the 'pseudo' tridentate groups in $Cu(ClO_4)_2$ (Favier, Bargues, Pascal, Belin & Tillard-Charbonnel, 1994). The water molecules, tightly bonded to Yb atoms inside channels, are difficult to remove. Water can be removed either at high temperatures or at lower temperatures by using a strong dehydrating agent like Cl_2O_6 (Favier & Pascal, 1992).

The mean distance (2.79 Å) between the O atom of the water molecule (O_A) and the non-bonded O atoms of the perchlorato groups suggests the presence of hydrogen bonding. Owing to the presence of three crystallographically different perchlorato groups, the eight O atoms around the Yb atom are arranged at the vertices of a fairly distorted square antiprism. Yb—O distances [from 2.255(8) to 2.493(7)Å] are close to those expected from the effective ionic radii of Shannon and Prewitt (Huheey, 1978). The transition from monohydrated to anhydrous ytterbium perchlorate results in ninefold coordination of Yb, in which all perchlorato groups are tridentate as in other anhydrous lanthanide complexes (Favier & Pascal, 1992). Anhydrous $Ln(ClO_4)_3$, as well as the recently characterized compound Yb(ReO₄)₃ (Khrustalev, Varfolomeev, Shamrai, Struchkov & Pisarevskii, 1993), have hierarchical structures deriving from that of MCl_3 (M = U, Ln) (Morosin, 1968).

Fig. 1. The molecular structure of Yb(ClO₄)₃.H₂O showing the ytterbium coordination shell of seven perchlorato groups and a water molecule (H atoms are not represented). 50% probability displacement ellipsoids are shown.

Fig. 2. Schematic packing in the Yb(ClO₄)₃.H₂O structure. Black circles represent Yb atoms, small open circles represent water molecules, and large open circles represent perchlorato groups.

Experimental

In the first step, the polyhydrated ytterbium perchlorate was prepared by boiling ytterbium(III) oxide (99.9%) in a slight excess of perchloric acid ($\sim 1 M$). The solution was concentrated until close to dryness and the white solid obtained by cooling at room temperature was stored in one of the two arms of a reactor sealed under vacuum (1.33 Pa). The arm containing Yb(ClO₄)₃.nH₂O was heated to 443 K while the other was cooled to 93 K. After 12-24 h, a glassy solid and crystalline colourless needles were isolated in the warmed arm, while evaporated water (or oxonium perchlorate) was discarded in the cooled arm. The very hygroscopic crystals of Yb(ClO₄)₃.H₂O were handled in a glove box filled with a purified argon atmosphere.

Μο Κα
$\lambda = 0.7$
Cell par
reflec
$\theta = 9-2$
$\mu = 10.9$
T = 298
Wedge
0.13 ×
Colourle

Data collection

Enraf-Nonius CAD-4 diffractometer ω/θ scans

radiation 1073 Å ameters from 25 tions n° 96 mm⁻¹ K $0.10 \times 0.08 \text{ mm}$ ess

1398 observed reflections $[I > 3\sigma(I)]$ $R_{\rm int} = 0.0246$

Absorption correction:	$\theta_{\rm max} = 25^{\circ}$
numerical (SHELX76;	$h = 0 \rightarrow 11$
Sheldrick, 1976)	$k = -13 \rightarrow 13$
$T_{\min} = 0.361, T_{\max} =$	$l = -16 \rightarrow 16$
0.635	3 standard reflections
4488 measured reflections	frequency: 60 min
1593 independent reflections	intensity decay: <0.6%
-	

Refinement

 $(\Delta/\sigma)_{\rm max} = 0.001$ Refinement on F $\Delta \rho_{\rm max} = 1.50 \ {\rm e} \ {\rm \AA}^{-3}$ R = 0.0313 $\Delta \rho_{\rm min} = -2.69 \ {\rm e} \ {\rm \AA}^{-3}$ wR = 0.0389S = 0.84Extinction correction: none Atomic scattering factors 1347 reflections 154 parameters from Cromer & Mann H atoms not located (1968) $w = 1/[\sigma^2(F) + 0.0014F^2]$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	х	у	z	U_{eq}
Yb	0.31022 (4)	0.32348 (5)	0.36213 (6)	0.0138(3)
C11	0.3064 (2)	-0.1003 (3)	-0.2873 (3)	0.017(2)
Cl2	0.5211 (2)	0.6796 (3)	0.2033 (3)	0.015 (2)
C13	-0.0091(2)	0.3313 (3)	-0.2283 (3)	0.018 (2)
011	0.231(1)	0.816(1)	-0.382(1)	0.038(7)
O12	0.3424 (8)	0.062(1)	-0.421 (1)	0.028 (5)
013	0.4464 (8)	0.787(1)	-0.263 (1)	0.029 (6)
014	0.2275 (9)	0.940(1)	-0.093 (1)	0.040(7)
O21	0.4651 (9)	0.8632 (9)	0.186(1)	0.029 (6)
O22	0.4002 (8)	0.5853 (9)	0.233(1)	0.027 (6)
O23	-0.3708 (8)	0.637(1)	0.024(1)	0.034 (6)
024	-0.4072 (8)	0.6138 (9)	0.378 (1)	0.024 (6)
O31	0.017(1)	0.280(1)	-0.025 (1)	0.041 (7)
032	-0.046(1)	0.197(1)	-0.305 (1)	0.044 (8)
O33	0.1277 (8)	0.483(1)	-0.223 (1)	0.036(7)
O34	0.1188 (8)	0.394(1)	-0.363 (1)	0.037 (7)
O _A	-0.1892(9)	0.856(1)	-0.270(1)	0.0316 (6)

Table 2. Geometric parameters (Å, °)

YbO _A i	2.255 (8)	Cl2-021	1.405 (7)
Yb-013 ⁱⁱ	2.257 (7)	Cl2—O23 ^{vi}	1.425 (8)
Yb-O12 ⁱⁱⁱ	2.261 (7)	Cl2—O22	1.446 (8)
Yb-O33 ⁱ	2.286 (8)	Cl2—O24 ^{vi}	1.451 (7)
Yb—034 ⁱⁱⁱ	2.307 (8)	C13—O32	1.407 (9)
Yb022	2.308 (7)	Cl3-031	1.412 (8)
Yb-O24 ^{iv}	2.352 (7)	Cl3O33	1.438 (8)
Yb023 ⁱ	2.493 (7)	Cl3-034	1.439 (8)
C11011 ^v	1.394 (9)	$O_A \cdot \cdot \cdot O12^{vii}$	2.72 (1)
C11014 ^v	1.398 (8)	$O_A \cdot \cdot \cdot O23$	2.84 (1)
C11013 ^v	1.445 (7)	$O_A \cdot \cdot \cdot O31^1$	2.79 (1)
CI1—O12	1.451 (8)	$O_A \cdot \cdot \cdot O33$	2.81(1)
O12—Yb—O23	125.9 (3)	011-C11-012	109.4 (5)
O12YbO24	75.3 (2)	011—CI1—O13	109.4 (5)
012Yb033	139.9 (3)	011-C11-014	113.8 (5)
O12—Yb—O34	81.7 (3)	012-C11-013	106.1 (4)
O12—Yb—O _A	74.0 (3)	012-Cl1-014	109.2 (5)
O13—Yb—O22	80.1 (3)	013-C11-014	108.7 (5)
O13—Yb—O23	72.8 (3)	O21-C12O22	109.0 (5)
O13—Yb—O24	78.2 (3)	O21—Cl2—O23	111.6 (5)
O13—Yb—O33	138.4 (3)	O21—Cl2—O24	112.3 (4)
O13—Yb—O34	145.7 (3)	O22—Cl2—O23	109.5 (5)
O13—Yb—O _A	105.8 (3)	O22C12O24	107.8 (4)
O22—Yb—O23	70.9 (3)	O23-C12-O24	106.6 (4)
O22-Yb-O24	73.0(2)	O31-C13-O32	114.2 (5)

74.1 (3)	O31—Cl3—O33	107.0(5)
104.0 (3)	O31—Cl3—O34	108.8 (5)
139.9 (3)	O32—C13—O33	109.7 (5)
136.7 (2)	O32—Cl3—O34	110.7 (5)
68.2 (3)	O33—C13—O34	106.1 (5)
141.2 (3)	Yb-012-Cl1	158.7 (5)
73.2 (3)	Yb-013-Cll	155.6 (5)
122.6 (3)	Yb-022-Cl2	147.2 (5)
70.8 (3)	Yb-023-Cl2	145.9 (5)
147.0(2)	Yb-024-Cl2	148.5 (4)
73.4 (3)	Yb-033-Cl3	151.9 (5)
76.5 (3)	Yb-034-Cl3	142.1 (5)
92.9 (3)		
	74.1 (3) 104.0 (3) 139.9 (3) 136.7 (2) 68.2 (3) 141.2 (3) 73.2 (3) 122.6 (3) 70.8 (3) 147.0 (2) 73.4 (3) 76.5 (3) 92.9 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) -x, 1 - y, -z; (ii) 1 - x, 1 - y, -z; (iii) x, y, 1 + z; (iv) -x, 1-y, 1-z; (v) x, y-1, z; (vi) 1+x, y, z; (vii) -x, 1-y, -1-z.

H atoms of the solvating water molecule have not been taken into account for the structure refinement.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: own program. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: ORTEPII (Johnson, 1976), ATOMS (Dowty, 1993).

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1135). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Belin, C. H., Chaabouni, M., Pascal, J. L. & Potier, J. (1982). Inorg. Chem. 21, 3557-3560.
- Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321-324.
- Csöregh, I., Huskowska, E., Ertan, A., Legendziewicz, J. & Kierkegaard, P. (1989). Acta Chem. Scand. 43, 829-833.
- Dowty, E. (1993), ATOMS. A Computer Program for Displaying Atomic Structures. 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Favier, F., Bargues, S., Pascal, J. L., Belin, C. & Tillard-Charbonnel, M. (1994). J. Chem. Soc. Dalton Trans. pp. 3119-3121.
- Favier, F. & Pascal, J. L. (1992). J. Chem. Soc. Dalton Trans. pp. 1997-2002.
- Fourati, M., Chaabouni, M., Belin, C. H., Charbonnel, M., Pascal, J. L. & Potier, J. (1986). Inorg. Chem. 25, 1386-1390.
- Huheey, J. E. (1978). Inorganic Chemistry Principles of Structures and Reactivity, 2nd ed., pp. 71-74. New York: Harper & Row.
- Huskowska, E., Legendziewicz, J., Schleid, Th. & Meyer, J. (1992). Mater. Chem. Phys. 31, 117-122.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Khrustalev, V. N., Varfolomeev, M. B., Shamrai, N. B., Struchkov, U. T. & Pisarevskii, A. P. (1993). Koord. Khim. 19, 871-872.
- Morosin, B. (1968). J. Chem. Phys. 49, 3007-3012.
- Pascal, J. L., Potier, J., Jones, D. J., Roziere, J. & Michalowicz, A. (1985). Inorg. Chem. 24, 238-241.
- Schleid, Th., Meyer, G., Oczko, G. & Legendziewicz, J. (1991). J. Alloys Compd. 17, 337-345.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.